Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Functional analysis of the grapevine paralogs of the SMG7 NMD factor using a heterolog VIGS-based gene depletion-complementation system.

Identifieur interne : 002E77 ( Main/Exploration ); précédent : 002E76; suivant : 002E78

Functional analysis of the grapevine paralogs of the SMG7 NMD factor using a heterolog VIGS-based gene depletion-complementation system.

Auteurs : Anna Hangyáné Benkovics [Hongrie] ; Tünde Nyik ; Zsuzsanna Mérai ; Dániel Silhavy ; György Dénes Bisztray

Source :

RBID : pubmed:21234790

Descripteurs français

English descriptors

Abstract

Nonsense-mediated mRNA decay (NMD) is a eukaryotic quality control system that identifies and eliminates transcripts having a premature translation termination codon (PTC). NMD is also involved in the control of several wild-type mRNAs. The NMD core machinery consists of three highly conserved NMD factors (UPF1, UPF2 and UPF3) and at least one less conserved 14-3-3-like domain containing protein (SMG7). A PTC is identified by UPF factors, and then SMG7 triggers rapid transcript decay. UPF factors are generally encoded by a single gene, whereas SMG7 has duplicated several times during evolution. Recently it was reported that the plant SMG7 is autoregulated through NMD and that SMG7 has two relatively divergent paralogs in dicots, SMG7 and SMG7L. In mammals all three SMG7 related genes (SMG5, SMG6 and SMG7) are essential in NMD, so we hypothesized that in plants the SMG7 and SMG7L duplicates may also play distinct roles in NMD. To test this possibility, we have analyzed the evolution and the function of plant SMG7 homologs. We show that SMG7L is not required for plant NMD. Interestingly, we found that the grapevine and poplar genomes contain two quite divergent SMG7 paralogs which may have derived from an ancient duplication event. Using heterolog depletion/complementation assays we demonstrate that both grapevine SMG7 copies retained the complete NMD activity and both of them are under NMD control, whilst SMG7L has lost NMD activity and NMD control.

DOI: 10.1007/s11103-010-9726-0
PubMed: 21234790


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Functional analysis of the grapevine paralogs of the SMG7 NMD factor using a heterolog VIGS-based gene depletion-complementation system.</title>
<author>
<name sortKey="Benkovics, Anna Hangyane" sort="Benkovics, Anna Hangyane" uniqKey="Benkovics A" first="Anna Hangyáné" last="Benkovics">Anna Hangyáné Benkovics</name>
<affiliation wicri:level="1">
<nlm:affiliation>Agricultural Biotechnology Center, Szent-Györgyi 4, 2100 Gödöllő, Hungary.</nlm:affiliation>
<country xml:lang="fr">Hongrie</country>
<wicri:regionArea>Agricultural Biotechnology Center, Szent-Györgyi 4, 2100 Gödöllő</wicri:regionArea>
<wicri:noRegion>2100 Gödöllő</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Nyik, Tunde" sort="Nyik, Tunde" uniqKey="Nyik T" first="Tünde" last="Nyik">Tünde Nyik</name>
</author>
<author>
<name sortKey="Merai, Zsuzsanna" sort="Merai, Zsuzsanna" uniqKey="Merai Z" first="Zsuzsanna" last="Mérai">Zsuzsanna Mérai</name>
</author>
<author>
<name sortKey="Silhavy, Daniel" sort="Silhavy, Daniel" uniqKey="Silhavy D" first="Dániel" last="Silhavy">Dániel Silhavy</name>
</author>
<author>
<name sortKey="Bisztray, Gyorgy Denes" sort="Bisztray, Gyorgy Denes" uniqKey="Bisztray G" first="György Dénes" last="Bisztray">György Dénes Bisztray</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="RBID">pubmed:21234790</idno>
<idno type="pmid">21234790</idno>
<idno type="doi">10.1007/s11103-010-9726-0</idno>
<idno type="wicri:Area/Main/Corpus">002F50</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002F50</idno>
<idno type="wicri:Area/Main/Curation">002F50</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002F50</idno>
<idno type="wicri:Area/Main/Exploration">002F50</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Functional analysis of the grapevine paralogs of the SMG7 NMD factor using a heterolog VIGS-based gene depletion-complementation system.</title>
<author>
<name sortKey="Benkovics, Anna Hangyane" sort="Benkovics, Anna Hangyane" uniqKey="Benkovics A" first="Anna Hangyáné" last="Benkovics">Anna Hangyáné Benkovics</name>
<affiliation wicri:level="1">
<nlm:affiliation>Agricultural Biotechnology Center, Szent-Györgyi 4, 2100 Gödöllő, Hungary.</nlm:affiliation>
<country xml:lang="fr">Hongrie</country>
<wicri:regionArea>Agricultural Biotechnology Center, Szent-Györgyi 4, 2100 Gödöllő</wicri:regionArea>
<wicri:noRegion>2100 Gödöllő</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Nyik, Tunde" sort="Nyik, Tunde" uniqKey="Nyik T" first="Tünde" last="Nyik">Tünde Nyik</name>
</author>
<author>
<name sortKey="Merai, Zsuzsanna" sort="Merai, Zsuzsanna" uniqKey="Merai Z" first="Zsuzsanna" last="Mérai">Zsuzsanna Mérai</name>
</author>
<author>
<name sortKey="Silhavy, Daniel" sort="Silhavy, Daniel" uniqKey="Silhavy D" first="Dániel" last="Silhavy">Dániel Silhavy</name>
</author>
<author>
<name sortKey="Bisztray, Gyorgy Denes" sort="Bisztray, Gyorgy Denes" uniqKey="Bisztray G" first="György Dénes" last="Bisztray">György Dénes Bisztray</name>
</author>
</analytic>
<series>
<title level="j">Plant molecular biology</title>
<idno type="eISSN">1573-5028</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence (MeSH)</term>
<term>Arabidopsis (genetics)</term>
<term>Arabidopsis (metabolism)</term>
<term>Carrier Proteins (chemistry)</term>
<term>Carrier Proteins (genetics)</term>
<term>Carrier Proteins (metabolism)</term>
<term>Conserved Sequence (MeSH)</term>
<term>Gene Deletion (MeSH)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Phylogeny (MeSH)</term>
<term>Protein Binding (MeSH)</term>
<term>RNA Stability (MeSH)</term>
<term>RNA, Messenger (metabolism)</term>
<term>Sequence Alignment (MeSH)</term>
<term>Tobacco (genetics)</term>
<term>Tobacco (metabolism)</term>
<term>Vitis (genetics)</term>
<term>Vitis (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ARN messager (métabolisme)</term>
<term>Alignement de séquences (MeSH)</term>
<term>Arabidopsis (génétique)</term>
<term>Arabidopsis (métabolisme)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Délétion de gène (MeSH)</term>
<term>Liaison aux protéines (MeSH)</term>
<term>Phylogenèse (MeSH)</term>
<term>Protéines de transport (composition chimique)</term>
<term>Protéines de transport (génétique)</term>
<term>Protéines de transport (métabolisme)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Stabilité de l'ARN (MeSH)</term>
<term>Séquence conservée (MeSH)</term>
<term>Séquence d'acides aminés (MeSH)</term>
<term>Tabac (génétique)</term>
<term>Tabac (métabolisme)</term>
<term>Vitis (génétique)</term>
<term>Vitis (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Carrier Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Protéines de transport</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Arabidopsis</term>
<term>Carrier Proteins</term>
<term>Tobacco</term>
<term>Vitis</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Arabidopsis</term>
<term>Protéines de transport</term>
<term>Tabac</term>
<term>Vitis</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Arabidopsis</term>
<term>Carrier Proteins</term>
<term>RNA, Messenger</term>
<term>Tobacco</term>
<term>Vitis</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>ARN messager</term>
<term>Arabidopsis</term>
<term>Protéines de transport</term>
<term>Tabac</term>
<term>Vitis</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Conserved Sequence</term>
<term>Gene Deletion</term>
<term>Gene Expression Regulation, Plant</term>
<term>Molecular Sequence Data</term>
<term>Phylogeny</term>
<term>Protein Binding</term>
<term>RNA Stability</term>
<term>Sequence Alignment</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Alignement de séquences</term>
<term>Données de séquences moléculaires</term>
<term>Délétion de gène</term>
<term>Liaison aux protéines</term>
<term>Phylogenèse</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Stabilité de l'ARN</term>
<term>Séquence conservée</term>
<term>Séquence d'acides aminés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Nonsense-mediated mRNA decay (NMD) is a eukaryotic quality control system that identifies and eliminates transcripts having a premature translation termination codon (PTC). NMD is also involved in the control of several wild-type mRNAs. The NMD core machinery consists of three highly conserved NMD factors (UPF1, UPF2 and UPF3) and at least one less conserved 14-3-3-like domain containing protein (SMG7). A PTC is identified by UPF factors, and then SMG7 triggers rapid transcript decay. UPF factors are generally encoded by a single gene, whereas SMG7 has duplicated several times during evolution. Recently it was reported that the plant SMG7 is autoregulated through NMD and that SMG7 has two relatively divergent paralogs in dicots, SMG7 and SMG7L. In mammals all three SMG7 related genes (SMG5, SMG6 and SMG7) are essential in NMD, so we hypothesized that in plants the SMG7 and SMG7L duplicates may also play distinct roles in NMD. To test this possibility, we have analyzed the evolution and the function of plant SMG7 homologs. We show that SMG7L is not required for plant NMD. Interestingly, we found that the grapevine and poplar genomes contain two quite divergent SMG7 paralogs which may have derived from an ancient duplication event. Using heterolog depletion/complementation assays we demonstrate that both grapevine SMG7 copies retained the complete NMD activity and both of them are under NMD control, whilst SMG7L has lost NMD activity and NMD control.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">21234790</PMID>
<DateCompleted>
<Year>2011</Year>
<Month>03</Month>
<Day>03</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1573-5028</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>75</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2011</Year>
<Month>Feb</Month>
</PubDate>
</JournalIssue>
<Title>Plant molecular biology</Title>
<ISOAbbreviation>Plant Mol Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Functional analysis of the grapevine paralogs of the SMG7 NMD factor using a heterolog VIGS-based gene depletion-complementation system.</ArticleTitle>
<Pagination>
<MedlinePgn>277-90</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s11103-010-9726-0</ELocationID>
<Abstract>
<AbstractText>Nonsense-mediated mRNA decay (NMD) is a eukaryotic quality control system that identifies and eliminates transcripts having a premature translation termination codon (PTC). NMD is also involved in the control of several wild-type mRNAs. The NMD core machinery consists of three highly conserved NMD factors (UPF1, UPF2 and UPF3) and at least one less conserved 14-3-3-like domain containing protein (SMG7). A PTC is identified by UPF factors, and then SMG7 triggers rapid transcript decay. UPF factors are generally encoded by a single gene, whereas SMG7 has duplicated several times during evolution. Recently it was reported that the plant SMG7 is autoregulated through NMD and that SMG7 has two relatively divergent paralogs in dicots, SMG7 and SMG7L. In mammals all three SMG7 related genes (SMG5, SMG6 and SMG7) are essential in NMD, so we hypothesized that in plants the SMG7 and SMG7L duplicates may also play distinct roles in NMD. To test this possibility, we have analyzed the evolution and the function of plant SMG7 homologs. We show that SMG7L is not required for plant NMD. Interestingly, we found that the grapevine and poplar genomes contain two quite divergent SMG7 paralogs which may have derived from an ancient duplication event. Using heterolog depletion/complementation assays we demonstrate that both grapevine SMG7 copies retained the complete NMD activity and both of them are under NMD control, whilst SMG7L has lost NMD activity and NMD control.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Benkovics</LastName>
<ForeName>Anna Hangyáné</ForeName>
<Initials>AH</Initials>
<AffiliationInfo>
<Affiliation>Agricultural Biotechnology Center, Szent-Györgyi 4, 2100 Gödöllő, Hungary.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Nyikó</LastName>
<ForeName>Tünde</ForeName>
<Initials>T</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Mérai</LastName>
<ForeName>Zsuzsanna</ForeName>
<Initials>Z</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Silhavy</LastName>
<ForeName>Dániel</ForeName>
<Initials>D</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Bisztray</LastName>
<ForeName>György Dénes</ForeName>
<Initials>GD</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2011</Year>
<Month>01</Month>
<Day>14</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Plant Mol Biol</MedlineTA>
<NlmUniqueID>9106343</NlmUniqueID>
<ISSNLinking>0167-4412</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D002352">Carrier Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012333">RNA, Messenger</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017360" MajorTopicYN="N">Arabidopsis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002352" MajorTopicYN="N">Carrier Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017124" MajorTopicYN="N">Conserved Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017353" MajorTopicYN="Y">Gene Deletion</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011485" MajorTopicYN="N">Protein Binding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020871" MajorTopicYN="N">RNA Stability</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012333" MajorTopicYN="N">RNA, Messenger</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016415" MajorTopicYN="N">Sequence Alignment</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014026" MajorTopicYN="N">Tobacco</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D027843" MajorTopicYN="N">Vitis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2010</Year>
<Month>06</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2010</Year>
<Month>12</Month>
<Day>24</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>1</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>1</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>3</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">21234790</ArticleId>
<ArticleId IdType="doi">10.1007/s11103-010-9726-0</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nat Struct Mol Biol. 2010 Oct;17(10):1269-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20818392</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol Methods. 2009 Feb;155(2):167-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19010356</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Feb 17;106(7):2453-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19181858</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2001 Sep 1;15(17):2215-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11544179</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2009 Jan;28(1):21-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18818929</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1999 Mar;11(3):471-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10072405</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2006 Aug;47(3):480-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16813578</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Mol Biol. 2006 May;13(5):462-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16622410</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1999 Feb;151(2):605-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9927455</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2008 Jul 1;121(Pt 13):2208-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18544632</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2006 Feb 1;20(3):355-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16452507</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Hered. 2009 Sep-Oct;100(5):605-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19596713</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Jul 10;424(6945):194-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12853957</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2006 May;47(5):572-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16540482</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2009 Jul;29(13):3517-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19414594</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2006;34(21):6147-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17088291</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2004 Nov 4;432(7013):112-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15525991</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2003 Aug 1;22(15):3960-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12881430</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2008 Apr 29;6(4):e111</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18447585</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 1998 Jun;23(6):198-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9644970</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2009 Feb 4;583(3):499-505</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19162024</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Mol Biol. 2009 Jan;16(1):49-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19060897</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2002 Jun 17;21(12):3070-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12065420</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 1999 Aug;4(2):153-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10488331</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry (Mosc). 2006 Dec;71(12):1377-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17223792</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2003 Feb 3;22(3):641-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12554664</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA. 2009 Jul;15(7):1265-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19474145</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2008 May;27(5):845-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18256839</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2000 Dec 15;19(24):6860-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11118221</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2007 May 1;21(9):1075-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17437990</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2007 Dec 19;2(12):e1326</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18094749</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2001 Sep 3;20(17):4987-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11532962</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2003 Nov;12(5):1187-200</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14636577</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2009 Nov;71(4-5):367-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19653106</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2005 Feb 18;17(4):537-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15721257</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2008 Jun 4;27(11):1585-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18451801</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Sep 23;309(5743):2010-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16179466</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Mol Biol. 2009 Jul;16(7):747-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19503078</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2004 Nov 19;16(4):587-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15546618</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2009 Dec;60(6):1031-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19754518</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2001 Jan;25(2):237-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11169199</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2005 Aug;43(4):530-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16098107</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2006 Jul;47(1):49-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16740149</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2007 Jul;48(7):1072-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17567637</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 2006 Nov;31(11):639-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17010613</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA. 2005 Oct;11(10):1530-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16199763</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Dec;136(4):3999-4009</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15591447</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2007;35(22):7688-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17984081</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA. 2008 Dec;14(12):2609-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18974281</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Soc Trans. 2008 Jun;36(Pt 3):497-501</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18481988</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2007 Aug;24(8):1596-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17488738</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 Oct;18(10):2767-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17041150</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Genet Genomics. 2010 May;283(5):493-501</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20361338</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 Sep 27;449(7161):463-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17721507</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Hongrie</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Bisztray, Gyorgy Denes" sort="Bisztray, Gyorgy Denes" uniqKey="Bisztray G" first="György Dénes" last="Bisztray">György Dénes Bisztray</name>
<name sortKey="Merai, Zsuzsanna" sort="Merai, Zsuzsanna" uniqKey="Merai Z" first="Zsuzsanna" last="Mérai">Zsuzsanna Mérai</name>
<name sortKey="Nyik, Tunde" sort="Nyik, Tunde" uniqKey="Nyik T" first="Tünde" last="Nyik">Tünde Nyik</name>
<name sortKey="Silhavy, Daniel" sort="Silhavy, Daniel" uniqKey="Silhavy D" first="Dániel" last="Silhavy">Dániel Silhavy</name>
</noCountry>
<country name="Hongrie">
<noRegion>
<name sortKey="Benkovics, Anna Hangyane" sort="Benkovics, Anna Hangyane" uniqKey="Benkovics A" first="Anna Hangyáné" last="Benkovics">Anna Hangyáné Benkovics</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002E77 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002E77 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:21234790
   |texte=   Functional analysis of the grapevine paralogs of the SMG7 NMD factor using a heterolog VIGS-based gene depletion-complementation system.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:21234790" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020